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10.22 COMPANDER CHARACTERISTIC

Figure 10.20 shows the compander charncteristics which is the combination of the compressor
and expander characteristics. Due to the inverse nature of compressor and expander, the overall
characteristics of the compander is a straight line (dotted line in figure 10.20. This indicates that

all the boosted signals are brought back to their original amplitudes.*
Output voltage

Compression

Expansion

Input voltage

Compression

characteristics

Fig. 10.20 Companding curves for PCM system

10.23 DIFFERENT TYPES OF COMPRESSOR CHARACTERISTICS
(GGSIPU, Delhi, Sem. Exam., 2006-07) (10 marks)

Ideally, we need a linear compressor characteristics for small amplitudes of the input signa:‘a:lxd.
a logarithmic characteristic elsewhere. In pratice, this is achieved by using following two methods:

(i) u-law companding
(it) A-law comapding

10.23.1. p-law Companding
In the p-law companding, the compressor characteristic is continuous. It is approximately

linear for smaller values of input levels and logarithmic for high input levels. The u-law compre-
ssor characteristic is mathematically expressed as under:

In(Q+p|x]|/xp0y)
2(x) = (58m%)— fndl+) & .(10.44)

where 0= el B,

Here, z(x) represents the output and x is the input to the compressor. Also, | x| I
the normalized value of input with respect to the maximum value x_, . Further, (sgn x) term
represents + 1 i.e., positive and negative values of input and output. The p-law compressor
characteristics for different values of p have been shown in figure 10.21(a). The practically used
value of u is 255.1t may be noted that the characteristic corresponding to 1 = 0 corresponds to the
uniform quantization. The p-law comanding is used for speech and music signals. It is used for
PCM telephone systems in United States, Canada and Japan. Figure 10.21(b) shows the variation
of signal to quantization noise ratio with respect to signal level, with and without companding. It

is obvious that SNR is almost constant at all the signal levels when companding 1s used.

represents

T —— — — — — — — —

* Non uniform quantization can be used to make the SNR a constant for all signals within the

input range.
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(a) Compressor characteristic (b) PCM performance with p-law
of a u-law compressor companding

Fig. 10.21

10.23.2. A-law Comanding (VTU, Bangalore, Sem. Exam., 2004-2005)

In the A-law companding, the compressor characteristic Normalized
1S piecewise, made up of a linear segment for low level output
inputs and a logarithmic segment for high level inputs. L
Figure 10.22 shows the A-law compressor characteristics 0.8
for different values of A. Corresponding to A = 1, we observe
that the characteristic is linear which corresponds to a 0.6
uniform quantization. The practically used value of A is
87.56. The A-law companding is used for PCM telephone 0.4}
systems in Europe. The linear segment of the
characteristics is for low level inputs whereas the oo

logarithmic segments is for high level input. *It is

A = 87.56

mathematically expressed as under: 0 4 ;
02 04 06 08 1
A , X l /xmax for 0 < I X l <1 Normalized Input
2x) Tolhe 4 e 4 or(0< o (10.44a) Fig. 10.22 Compresssor chargcteristic
- e of A-law compressor
1+log, A A -

10.24 APPLICATIONS OF PCM

Some of the applications of PCM may be listed as under:
(i) With the advent of fibre optic cables, PCM is used in telephony
(if) In space communication, space craft transmits signals to earth. Here, the transm.ltt_ed
power is quite small (i.e., 10 or 15 W) and the distances are very large (i.e., a few _mllhon
km). However, due to the high noise immunity, only PCM systems can be used in such

applications.



42, LINEAR PREDICTION _

Linear prediction is a technique of time series analysis that emerges from the

examination of linear systems. Using linear prediction, the parameters of such a

system can be determined by Analyzing the systems inputs and outputs.

Prediction constitutes a special form of estimation specifically, the requirement

i .
s to use a finite set of present and past samples of a stationary process to predict a
sam 1 “ . . . .

ple of the process in the future. The prediction 1s linear if it is a linear

combinati i
tion of the given samples of the process.
é




e 'v,r
Predictor -

Predictor is a kind of filter designed to perform the prediction operation,
Prediction Error
rocess at the fi .
The difference between the actual sample of .tl:‘e permr Uture fim, \
interest and the predictor output is called the prediction i
According to the Wiener filter theory, a predictor is designed to minimig, e

uare value of the prediction error.
S Xn—l’ X,,_z e X,,__M drawn ﬁ'()m a Stati

to make a prediction of the sample X,.

mean sq
Consider the random sample

process X(7). Suppose the requirement is
Let )/(\, denote the random variable resulting from this prediction. We can write

A M
Xn = Z hok Xn—k
k=1

where &1, P25 -+ BoM
of delay elements employed in the predictor, as its order.
The predictor as a special case of the Wiener filter and it proceed as follows.

1. The variance of the sample X, viewed as the desired response, equals
% = ERX]
= Ry(0) ... (42)
Where it is assumed that X, has zero mean.
2. The cross-correlation function of X,, acting as the desired response, and
X, _,. acting as the &t tap input of the predictor, is given by
E[X, X,_+] = Rx (k) k=1,2,.M ..@43
3. The i i :
.auto correla.tlor.l function of the predictor’s tap input X, _, with another
tap input X, _, is given by
E X =
(X, 4 Xy -] Ry (m-k) kkm=1,2,. M ..(@44

4. The i '
normal equation to fit the linear prediction problems as follows.

- (4.0)

are the optimum predictor coefficients. M is the number

M
,,El fom Ry(m — k) = Ry(k) k=12,.. M .. (45)

T e e e e
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Fig. 4.1. Linear Predictor
4.2.1. PREDICTION ERROR PROCESS

The prediction error can be denoted by €, and is defined by

AN

, =X -X

n

M
= x,,— 2 hy, X, _ ... (4.6)

The prediction error €, can be computed by giving the present and past samples
of a statlonary process, namely X, , X

~1 -+ X, _y and given the predictor co
efficients s, &

02 -+ Noy DY using a structure called a prediction-error filter.

The operation of prediction-error filtering is invertible. Specifically we may
rearrange equation (4.6) as
% hog Xy -4 +8, .. (4.7)
k=1
The present sample of the original process X, may be computed as a linearL
Combination of past samples of the process X, _ y, ... X, _ v plus the present

Prediction error €,, Where subscript n refers to the present.

|



Xn =M

Fig. 4.2. Prediction error filter

Below figure depicts the structure for performing the inverse operation. So this

structure can be called as inverse filter.

X
Zn 2 T" o
+

+
T

\ fL

Z.\ x x" -1
+

=
(=]
=

|
-

+
®__—-
el = = = = = e

xn- M+1

Delay

T
Xn-M
X

Fig. 4.3, Inverse filter —
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The impulse response of the inverse filter has infinite duration because of
feedback present in the filter, whereas the impulse response of the prediction error
glter has finite duration.

The structures of Fig.4.2 and 4.3 confirm that there is a one-to-one

Com,spondence between samples of a stationary process and those of the prediction
error process in that if we are given one, we can compute the other by means of a
linear filtering operation.

what is the reason for representing samples of a stationary process {X,} by
samples of the corresponding prediction error process { €, }?

The answer to this question lies the prediction error variance is less than o}c and

the variance of X,,.
[f X, has zero mean then we have €,. The prediction error variance equals.
o = E[e?]
M
= Ry (0)= X A, Ry (k) ... (4.8)

k=1

4.2.2. PROPERTIES OF LINEAR PREDICTION
Libnear prediction has following two important properties.

Property 1
The prediction error variance decreases with increasing predictor order.

In theory, this trend may go on indefinitely or until a critical predictor order is

reached, where after there is no further reduction.

Property 2
When the prediction error variance reaches its minimum possible value, the
Prediction error process a assumes the form of white noise.

A prediction error filter designed to whiten a stationary process is called a

[ ] " - L] s
Vhitening filter. The resultant white noise sequence is known as the innovation
|




L ——
e

e term innovation” refey, .
o the innovations process,

process associated with the predictor input and th
“newness”. Hence only new information is retained i

Prediction relies on the presence of correlation be

stationary process.

tween adjacent samples of

r then we successively reduce the correlatjy,

If we increase the predictor orde .
the prediction €rTOr Process consig,

between adjacent samples of the process, until

of a sequence of uncorrelated samples.

When this condition is reached, the prediction error variance attains iy

minimum possible value and the whitening of the original process is accomplished

Property 1 is exploited in the design of waveform coders.

e coders.
e ———— I — —

23 LUNEARPREDICTORVOCODERS

Property 2 1s exploited in the design of sourc

e T —
Pitch period
Impulse
train
generator
Vocal-cord
sound pulse
Voiced/ | Time varying
unvoiced _| digital filter .
switch T representing Syntheeilhzed
the vocal tract Spe
White-noise
generator
Vocal-tract
parameters

Fig. 4.4. Model of speech production process
_/
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Linear prediction provides the ettt

B glgle basi; -

for the digitization of speec), signals 5 of an important source coding technique

vocoding, relies on ol
\ parameterization of speech signals according featad

model for the speech production process g 1o a physica

Voiced Sounds

Unvoiced Sounds

It is also called as Ericative sounds. These sounds are generated by forming a

constriction at some point in the vocal tract and forcing air through the construction
at a high enough velocity to produce turbulence,

Examples of voiced and unvoiced sounds are represented by utterances for the
“A” and “S” segment in the word “Salt”.

The speech waveform shown in Fig.4.5 (a) is the result and the utterance “every
salt breeze comes from the sea” by a male subject.

The waveform shown in Fig.4.5 (b) corresponds to the “A” segment in the word
“Salt” and magnified waveform shown in Fig.4.5 (c) corresponds to the “S”

segment.

The generation of a voiced sound is modeled as the response of the vocal tract
filter excited with a periodic equal to the pitch period.

An unvoiced sound is modeled as the response of the vocal filter excited with a
white noise sequence.

The vocal tract filter is time varying, so that its coefficients can provide an
adequate representation for the input segment of voiced or unvoiced sound.

Linear predictive vocoder consists of two things

L Tr ansmitter
2. Receiver




Sentence-length waveform
(600 ms)

Voiced
segment “A”
(25 ms)

Unvoiced
segment “S”
(25 ms)

()
Fig. 4.5.

4.3.1. TRANSMITTER

First transmitter will perform analysis on the input speech signal, block by
block. Each block is 10-30 ms long, for which the speech production process m%
be treated as essentially stationary.




Prediction To
Coder
gooth g OrTON Y = channe
signal filter pe——t— input
Pitch

—— extractor

Fig. 4.6. Linear Predictive Vocoder Transmitter

The resulting parameters of analysis called as Prediction Error Fil
ro-efficients and a voiced/unvoiced parameter.

The pitch period will provide a complete description for the particular segme
»f the input speech signal. A digital representation of the parameters constitutes ]

ransmitted signal.

4.3.2. RECEIVER

From Speech Reproduction
channel—|  Decoder 1l> synthesizer of speech
output signal

Fig. 4.7. Linear Predictive Vocoder - Receiver

First the receiver will performs decoding followed by synthesis of the speec
ignal and the latter operation utilizes the model of speech production process.

The artificial sounding reproduction of the original speech signal is the standar
esult of this analysis/synthesis.

Some poor reproduction quality of a linear predictive vocoder is tolerated fo
¢cure military communications it requires very low bit rates. (4 kb/s or less).



3. The Wiener Filter

3.1 The Wiener-Hopf Equation

The Wiener filter theory is characterized by:

1. The assumption that both signal and noise are random processed with known spectral
CharaCt_eI'IStICS or, equivalently, known auto- and cross-correlation functions.

2. The criterion for best performance is minimum mean-square error. (This is partially to make
the problem mathematically tractable, but it is also a good physical criterion in many

applications.)
3. A solution based on scal
transfer function in the stationary case).

ar methods that leads to the optimal filter weighting function (or

h()orH(z) | — s(n)

LTI WSS

JWSS
R ’RyaRza-Rsz or SS(Z)aSv(Z)aSz(Z);SSZ(Z) known

7 = E{fst) 50T

Fig. 3.1-1

z(n)=s(m)+v(n) — 7

Wiener Filter Problem



We now consider the filter optimization problem that Wiener first solved in the 1940s. Referring
to Fig. 3.1-1, we assume the following:

1. The filter input is an additive combination of signal and noise, both of Which are jointly w1fie-
sense stationary (JWSS) with known auto- and cross-correlation functions (or corresponding
spectral functions). .

2. The filter is linear and time-invariant. No further assumption is made as to its form.

3. The output is also wide-sense stationary.

4. The performance criterion is minimum mean-square error.

The estimate §(n) of a signal s(r) is given by the convolution representation

(1) = h(n)*200) = Y. hn=i)z(i) = 3. hiyen 1), 3.11)

where z(i) is the measurement and #(#n) is the impulse response of the estimator. Let % denote

the region of support of A(n), defined by
H = {n :h(n) # O}.

Then, Eq. (3.1-1) can be rewritten as




30 =Y htiyz(n - 7). (3.1-2)

Let iesf .
the mean-square estimation error (MSE) J be

J = E{[s(n)- SO

= E{[S(ﬂ) — Zh(i)z(n - i)] lis(n) - > h()z(n- j):l} 3.1-3)
= E{s2 (n)} - ZZh(i)E{s(n)z(n —i)} +Z Z h@Oh(H)E{z(n—i)z(n— j}.

To minimize the MSE, take the partial derivatives of J with respect to (i), for each A(i)# 0.
Then, set the result equal to zero

5% = 2E{s(m)z(n =D} +2 ) h()E{zn=Dz(n~ )} (3.1-4)

=0.
Solving Eq. (3.1-4), we find
> h()E{z(n- Nz(n— )} =E{s(mzn-i)}, iex (3.1-5)

JjeH



which we may express in the form of

LHDRG~i) =R (), e, (3.1-6)

JEH

where R (k) is the autocorrelation function of z(n) and R (k) is the crosscorrelation function
of s(n) and z(n).

Eq. (3.1-6) is the discrete-time Wiener-Hopf equation. 1t is the basis for the derivation of the
Wiener filter.
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4.6. DELTA MODULATION (DM)

Delta Modulation (DM), which is the one-bit (or two level) version of DPCM. It

Provides a staircase approximation to the oversampled version of an input baseband
signal.



e el
Delta Modulation transmits only one bit per sample, i, the present sam,

value is compared with the previous sample value and indication.
x(t)

| ﬁﬁ
Staircase

r approximation
u(t)

Fig. 4.15.

Input signal x() is approximated to step signal by the delta modulator. This step
size is fixed. The difference between the input and the approximation 1s quantized
into only two levels namely, + 8 corresponding to positive and negative differences

respectively.

Output

#

+§ ——

0 = Input

Fig. 4.16. In
- input-Output Charact
eristic of two-i
evel quantizes
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If the approximation f;
alls be .
by &. low the signal at any sampling epoch, it is increased

If the S
approximation lies above the signal, it is diminished by 8.

Thus, the signal doe
spaioate SOpHOimE 3 .Change too rapidly from sample to sample, there the
100 remains within + § of the input signal.

The & denotes the a
quantizer used in th bsgl:;e value of the two representation levels of the one-bit
& . These two level indi i
. . s
characteristics of above Figure are indicated in the transfer

The step size A of the quantizer is related to § by
A= '
28 ... (4.22)

It denotes. the -inl?ut signal as x(r) and the staircase approximation to it as #(f).
then, the basic principle of delta modulation may be formalized in the following set

of discrete time relations.

e(nT,) = xnT,)-x (1 T,)

= x(nT,)-unT,-T)) ... (4.23)
b(n T,) = Osgn [e(n T,)] ... (4.24)
... (4.25)

u(n T,) = u(n TS—TS)+b(n T,)

where T, is the sampling period.
rror representing the difference between the present

e (n T,) is a prediction €
[ and the latest approximation to it.

sample value x (n T,) of the input signa
raic sign of the error e(n T,) except for

The binary quantity b (7 T ) is the algeb
bit word transmitted by the DM

the scaling factor . The b (# T,) is the one-

system.

4.6.1. DM TRANSMITTER
and an accumulator

It consists of a summer, @ two-level quantizer
lator is initially set to zero.

Interconnected. The accumu




Sampled
# :@ e(nTy) Onebit | g Output
quantizer

_______________________________

Fig. 4.17. DM transmitter

We may solve equations (4.23) — (4.25) for the accumulator output, obtaining

the result.
wnT,) = 53 sgnle (Tl
i=1

= Z b(iT,) ... (4.26)
i=1

cumulator increments the approximation 0
ulator. Indeed,

+dor-da

Thus, at each sampling instant, the ac
the input signal by * 5, depending on the binary output of the mod

the accumulator does the best it can to track the input by an increment
a time.
4.6.2. DM RECEIVER
The staircase approximation u(f) is reconstructed by passing the incominé
sequence of positive and negative pulses through an accumulator.
The out-of-band quantization noise in the high-frequency staircase wavefor®
u(¢) is rejected by passing it through a low-pass filter with a bandwidth equal t0 the
original signal bandwidth.




Modgﬁcaﬁans of PCM
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By comparing DM with DPCM, a delta modulation is a Special case of

diﬁ‘crcnﬁa] pulse code modulation except for an output low-pass filter.

--------------------------------

d B ) Low pass

A T 1| fiter [ Outpw

Input

Delay |
Ts

Accumulator

Fig. 4.18. DM Receiver
4.6.3. FEATURES OF DELTA MODULATION
Delta modulation offers two unique features

1. DM has a one-bit-code word for the output, which eliminates the need for
word framing.

2. DM has the simplicity of design for both the transmitter and receiver.

These two features make the use of delta modulation attractive for some types
of digital communications and for digital voice storage.

4.6.4. QUANTIZATION NOISE

Delta modulation has two types of quantization error.
1. Slope-overload distortion

2. Granular noise

Slope Overload Distortion
Letg (n T,) denote the quantizing error.
unT,) = x(nT,)+q(nT,)




n error e(n T,)as

4.24
n to express the predictio
... (4.28)

By rearranging the above equatio

Ts - Ts) G q(" T.s' - T:)
Thus, except for the quantization error gin T, — T,), the quantizer input 1s a first
signal, which may pe viewed as @ digital

input signal o equ the inverse of

e(n T,) = x(n T,)—x(n

backward difference of the input
rivative of the ivalently a$

approximation to the de
as the input sequence of

a digital integration process.
The sequence of samples {u# (7 T,)} to increase as fast ,
samples {x (n T,)} in a region of maximum slope of x(f),we require that the
... (4.29)

condition

8 d x(t) ,
T, > max |~ 4y

be satisifed. Otherwise, We find that the step size

staircase approximation u(t) to follow a steep segment of the input waveform x(f),

with the result u(?) falls behind x(¢), as illustrated  1n below Fig.4.19. This

antization error is called

condition is called slope-overload and the resulting qu

_overload distortion (noise).

A = 26 is too small for the

slope
Granular noise

Slope-overload
distortion

Fig. 4.19.




— LIt )
The maximum slope of the staircase approximation u(t) is fixed by the step size

A, increases and decreases in u(f) tend to occur along straight lines. For this reason
q delta modulator using a fixed step size is referred to as a linear delta l"l'IOdulator

(LDM).

granular Noise

Granular noise occurs when the step size A is too large relative to the local slope
characteristics of the input waveform x(¢).

Causing the staircase approximation () to hunt around a relatively flat segment
of the input waveform; this phenomenon is also illustrated in above F 1g8.4.19. The
granular noise is analogous to quantization noise in a PCM system.



